Printe	ed Paş	_	Subject Code:- BMICSE0204 Roll. No:	4
		Ī		
NO	IDA I	INSTITUTE OF ENGINEERING A	ND TECHNOLOGY, GREA	TER NOIDA
		(An Autonomous Institute Affi	•	
		M.Tech. (In		
		SEM: II - THEORY EXAM		
Tim	e• 3 F	Subject: Discret Hours		Max. Marks: 100
		structions:	10	iux. Marks. 100
IMP:	Verify	y that you have received the question pa	iper with the correct course, c	ode, branch etc.
		stion paper comprises of three Sections	-A, B, & C. It consists of Mu	ltiple Choice
_		MCQ's) & Subjective type questions.		,·
		n marks for each question are indicated your answers with neat sketches where	_	uestion.
		uitable data if necessary.	ver necessary.	
		ly, write the answers in sequential order	r.	
		should be left blank. Any written materi	ial after a blank sheet will not	be
evalua	ited/cl	hecked.		
SECT			05	20
1. Atte	•	all parts:-		
1-a.	A	is an ordered collection of	f objects. (CO1,K1)	1
	(a)	Relation		
	(b)	Function		
	(c)	Set		
	(d)	Proposition		
1-b.	A	relation R from a set A to a set B is a:	(CO1,K2)	1
	(a)	Subset of AUB		
	(b)	Subset of A∩B		
	(c)	Subset of A×B		
	(d)	Subset of B×A		
1-c.		semigroup is an algebraic structure (S, nat is: (CO2, K2)	*) where $*$ is a binary	operation 1
	(a)	Closed		
	(b)	Associative		
	(c)	Both closed and associative	tr1	
1 1	(d)	Closed, associative, and has an identify		
1-d.		n a Boolean algebra, which of the follow peration? (CO2, K1)	ving is the identity element for	the Λ 1
	(a)	0		

	(b) 1		
	(c) a		
	(d) a'		
1-e.	A partially ordered set (poset) is a set with a binary relation that is: (CO3,K2)		
	(a) Reflexive and symmetric	•	
	(b) Reflexive and transitive		
	(c) Reflexive, antisymmetric, and transitive		
	(d) Symmetric and transitive		
1-f.	In a lattice, which of the following is always to	rue? (CO3, K4)	1
	(a) ava=a (Idempotent Law for join)		
	(b) ana=a (Idempotent Law for meet)		
	(c) avb=bva (Commutative Law for jo		
	(d) All of the above	,	
1-g.	Let P: I am in Delhi.; Q: Delhi is clean.; then	q λ p (q and p) is? (CO4, K3)	1
	(a) Delhi is clean and I am in Delhi		
	(b) Delhi is not clean or I am in Delhi		
	(c) I am in Delhi and Delhi is not clean	4	
	(d) Delhi is clean but I am in Mumbai	25	
1-h.	. Which of the following is NOT a valid propos	sitional operator? (CO4, K2)	1
	(a) AND		
	(b) OR		
	(c) NOT		
	(d) SOMETIMES		
1-i.	Which matrix is used to represent adjacency b	between vertices? (CO5, K1)	1
	(a) Adjacency matrix		
	(b) Incidence matrix		
	(c) Path matrix		
	(d) Distance matrix		
1-j.	If a graph has a chromatic number of 1, it mu	st be: (CO5, K4)	1
	(a) Null graph		
	(b) Complete		
	(c) Empty (no edges)		
	(d) Tree		
2. Att	Attempt all parts:-		
2.a.	Explain the difference between ordered and u important in the Cartesian product of sets? (C	-	2
2.b.	State the defining property of a commutative	binary operation * on a set S.	2

	(CO2, K1)		
2.c.	Explain the following terms with appropriate examples: (CO3, K2) i) Homomorphism ii) Cyclic Group iii) Group	2	
2.d.	Differentiate between <i>Modus Ponens</i> and <i>Modus Tollens</i> ? Provide an example to distinguish between the two. (CO4, K4)		
2.e.	How is the number of edges calculated in a complete graph and a regular graph? (CO5, K3)	2	
SECT	ION-B	30	
3. Ansv	wer any <u>five</u> of the following:-		
3-a.	Consider the sets A={1,2,3} and B={a,b}. (CO1, K3) (a) Find the Cartesian product A×B. (b) Determine the power set of A, denoted by P(A). (c) Define a relation R from A to B such that R={(x,y) x∈A,y∈B,and x+1 corresponds to the position of y in the a List the elements of R.	6 alphabet	
3-b.	Define the following types of relations: (CO1, K3) 1. Reflexive 2. Symmetric	6	
	3. Asymmetric 4. Antisymmetric		
3-c.	(i) Explain why the identity element in a group is always unique. (CO2, K4) ii) Explain why the inverse of each element in a (G,*) is unique.	6	
3-d.	Consider the group $(\{0,1,2,3\}, +4)$ under addition modulo 4. Find 6 whether it satisfies the Commutative property or not. (CO2, K3)		
3.e.	Given a set A={2,3,4,5,6,10,12,24} with the 'divides' relation (): (CO3, K3) 1. Draw the Hasse diagram of the poset (A,). 2. Identify all minimal and maximal elements, 3. Determine if there is a greatest and a least element in this poset.	6	
3.f.	State the difference between tautology, contradiction, and contingency (CO4, K4) 1. Provide one example each 2. Construct truth tables to justify your examples.		
3.g.	Let G=(V,E) be an undirected, simple graph with V =6 and the degree sequence (3,3,2,2,2,2). (CO5, K4) (a)Draw a graph corresponding to this degree sequence (b) Is the graph complete graph or not? Justify your answer (c) Is the graph Eulerian? Explain why or why not	6	
SECT	ION-C	50	
4. Ansv	wer any one of the following:-		
4-a.	Given a set A and a relation R on A. Discuss the properties that R must satisfy for	10	

	K3)	
4-b.	What is a Venn Diagram? Explain set operations using Venn Diagrams. Draw a Venn Diagram for a group of 65 people includes 40 who like cricket, and 10 who like both tennis and cricket. (CO1, K3)	10
5. Ansv	wer any <u>one</u> of the following:-	
5-a.	Consider the group ({1,2,3,4,5,6} +7), of addition modulo 7. (CO2, K3) (a) Determine whether it forms a group. (b) Explain addition modulo and multiplication modulo with suitable examples.	10
5-b.	Consider the poset ($\{2,3,4,6,12,18,36\}$, $ $), where $ $ denotes the divisibility relation. (CO2, K4)	10
	 Draw the Hasse diagram for this poset. Identify all maximal and minimal elements. Determine if this poset is a lattice. Justify your answer. 	
6. Ansv	wer any <u>one</u> of the following:-	
6-a.	Draw the Hasse diagram of power set $P=(P(\{a,b,c\}),\subseteq)$. (CO3, K4) (a). Is this poset a lattice? Justify your answer. (b). Provide an example from the above hasse diagram of supremum and/or an infimum.	10
6-b.	Prove Idempotent law and Associative law in lattice, including the join (v) and meet (Λ) operations with a help of an example. Also describe Distributive lattice and Bounded lattice with a help of an example. (CO3, K4)	10
7. Ansv	wer any one of the following:-	
7-a.	Convert the following compound propositions into CNF: (a) $(p \rightarrow q) \land (q \lor (p \land r))$ (b) $p \land (p \rightarrow q)$ (CO4, K4)	10
7-b.	Define all laws in propositional logic algebra and prove any four using truth tables. (CO4, K4)	10
8. Ansv	wer any <u>one</u> of the following:-	
8-a.	Illustrate Graph coloring and chromatic number with a help of an example. Give an example of a graph with chromatic number 2 and one with chromatic number 3. Also prove that every complete graph is a regular graph but every regular graph is	10
	not complete graph. (CO5, K4)	
8-b.	What are planar and non-planar graph. Explain with a help of an example. Determine whether 5 vertices graph is planer or not. Illustrate with a help of an example. (CO5, K3)	10

its transitive closure R+ to be equal to its reflexive transitive closure R*. Provide an example of a relation where R+=R* and an example where R+=R*. (CO1,